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SUMMARY

Mathematical development and some computed results are presented for
Mindlin plate and shell elements, suitable for analysis of laminated composite
and sandwich structures. These elements use the conventional 3 (plate) or 5
(shell) nodal degrees of freedom, have no communicable mechanisms, have
no spurious shear energy (no shear locking), have no spurious membrane
energy (no membrane locking) and do not require arbitrary reduction of out-
of-plane shear moduli or under-integration. Atrtificial out-of -plane rotational
stiffnesses are added at the element level to avoid convergence problems or
singularity due to flat spots in shells.

In regular rectangular meshes, the Martin-Breiner 6-node triangular curved
shell (MB6) is about equivalent to the conventional 8-node quadrilateral with
2x2 integration (which is quite good). In distorted meshes, this 6-node
triangular element is distinctly better. The accuracy of the MB6 is most
evident in the NAFEMS LE2 curved shell patch test, where error at the
specified point is only 0.12 percent, and maximum error anywhere in the
patch is 2.5 percent. In contrast, results for five 6 and 8 node elements in
commercial programs showed errors of 8 percent to 85 percent at the
specified point, and maximum errors as large as —99 to +100 percent at some
points in the patch. The four-node quadrilateral, MB4, has very good
accuracy for a four-node element, and may be preferred in vibration analysis
because of narrower bandwidth.

The mathematical developments used in these elements, included here in
seven appendices, have been applied to elements with 3, 4, 6, and 10 nodes
and can be applied to other nodal configurations.

INTRODUCTION

Since the inception of finite element analysis, efforts have been made to
develop accurate shell elements. Many formulations have been tried, and no
attempt at review will be made here. Some element formulations are plagued
by spurious shear strains (“shear locking”); some by spurious membrane
strains (“membrane locking”). Some elements or element options may
represent bending deformation well but not membrane deformation. Other
elements or element options may represent membrane deformation well but
not bending. Few have been equally accurate for all deformation modes. The



unwary analyst may assume that because a given element and mesh solves
one load case correctly, it will be equally accurate for a different load case.
The eight- node isoparametric shell with 2x2 integration may be quite
accurate when rectangular, but it is under-integrated and much less accurate
when its shape is distorted.

The six-node curved triangular shell, MB6, presented here is believed to be a
significant advancement because it has excellent and uniform accuracy in all
deformation modes, and needs no “options” for different load cases, etc. The
triangular shape allows easy mesh generation around openings and
discontinuities where a rectangular element’s shape must be severely
distorted. Accuracy of stresses is most improved where it is most important;
in regions of high stress gradients.

The four-node warped quadrilateral shell, MB4, performs very well, and may
be preferred for vibration analysis because of its narrower bandwidth. In-
plane deformation can be improved by optional inclusion of incompatible
modes [4]. Bending deformation can be improved by optional activation of a
simulated antisymmetric bending mode.

ELEMENT PERFORMANCE

The National Agency for Finite Element Methods and Standards in the U.K.
supported development of testing procedures and test cases for evaluating
finite elements and programs, beginning with a set of benchmark problems
by Barlow and Davies in 1986 [5]. Four of these NAFEMS test cases are
shown in Figures 1,2,6, and 7. In addition, some other popular test cases are
shown; the Scordelis-Lo roof [1,2] in Figure 3; the Morley skew plate [6] in
Figure 4; and Plunkett’s vibrating wedge [7] in Figure 5. Some results for
these test cases are shown in Tables 1 to 7.

Results of NAFEMS tests for some commercial programs were published in
Benchmark Magazine in 1989 [8]. Some results for the LE2 and LE3 shell
test cases are shown in Table 8. Errors were quite significant, and at least one
entry appears over-optimistic.

More recent calculations (February 1999) suggest that some commercial
programs still contained shell elements with poor accuracy. Table 9 shows
results for 5 important test cases for six-node elements in two versions of
NASTRAN, and for the Ahmad-Irons-Zienkiewicz (AIZ) [1] elements which
are contained in some popular programs, as well as the MB6. The NAFEMS
LE2 test, described in Figure 1, only asks for the stress at the outer surface at
point E, and errors in these average stresses are shown in Table 9. Some



stresses at other points in the patch are shown in parentheses. Note that this is
a patch test, and stress should be constant everywhere. However, it is possible
to get stresses from 99 percent low to about 100 percent high from one of
these commercial programs at some points in the patch. Selection of the
“best” element option may improve results, but criteria for selecting these
options and reasons for which is the default are not necessarily clear. In
contrast, the MB6 error in the LE2 test is only 0.12 percent at the specified
point, and its maximum error anywhere in the patch for either load case is 2.5
percent. In addition, the default element option in “NASTRAN B” did not
converge for either 4 or 6 node elements in the Scordelis-Lo roof [1,2],
Figure 3.

The MB6 and MB4 elements perform very well on the critical test cases in
Figures 1to 7.

Some results are presented in tables 1 to 7 from seven of the test cases
used in element validation. Elements are identified as follows:

MB10 is the Martin-Breiner 10-node triangular shell

MBS6 is the Martin-Breiner 6-node triangular shell

MBA4 is the Martin-Breiner 4-node quadrilateral shell

MBA4SI is the Martin-Breiner 4-node quadrilateral with simulated
antisymmetric bending mode and incompatible in-plane modes active.

AIZ6 is the Ahmad-Irons-Zienkiewicz 6-node triangular shell.

AIZ8 is the Ahmad-Irons-Zienkiewicz 8-node quadrilateral shell.

AIZ10 is the Ahmad-Irons-Zienkiewicz 10-node triangular shell

LUT71S is a 3-node triangular shell [3, 10, 16] with the addition of a
simulated antisymmetric bending mode (SABM).

In NAFEMS LE2 [5], Figure 1 and Table 1, the stress should be uniform
throughout. MB6 is the only element tabulated which has a near-zero error in
average stress and near-zero standard deviation in both cases. The MB6
stress is also nearly uniform throughout, whereas for some other elements it
is not. The maximum error for the MB6 at any node of any element, either
top or bottom surface and either load case is 2.5 percent.

In NAFEMS LE3 (5], Figure 2 and Table 2, the MB6 is much more accurate
than the other quadratic elements in the coarse mesh. The LU71S element is
surprisingly accurate in the coarse mesh.

In the Scordelis-Lo Roof [1,2], Figure 3 and Table 3, the MB6 has, by far, the
fastest convergence. In comparing calculated results, divergence was
observed in some other elements/programs at about 16 nodes per side.



In the Morley skew plate, [6], Figure 4 and Table 4, the MB6 has very good
accuracy, and other elements shown require many more degrees of freedom
to get under 1 percent error.

Plunkett’s vibrating wedge [7], Figure 5 and Table 5, is a severe test of
performance with variable thickness. The MB6 computed the most (10)
mode shapes that corresponded to Plunkett’s sketches, whereas the AIZ8
computed only 8. Also, the MB6 errors in frequencies were smaller than the
AIZ8 in 5 of those first 8 modes, and smaller than the AIZ6 in 9 of the 10
modes.

In NAFEMS T1 [5], Figure 6 and Table 6, both 6-node shells MB6 and AIZ6
give excellent results, whereas the 8-node shell, AIZ8, is 7.8 percent low.
Performance of the 4-node shell, MB4, with incompatible in-plane modes is
very good.

In the NAFEMS laminated strip test case, [9] Figure 7 and Table 7, all of the
elements compared give very accurate results for deflection and bending
stress. The MB6 error in interlaminar stress is 2.4 percent, which is good,
although the AIZ element errors are even smaller.

It is expected that the 6-node triangle, MB6, will be a particularly useful
element in stress analysis of laminated composite plate and shell structures. It
has nearly the same excellent accuracy in all deformation modes, and needs
no “options” for different conditions. It needs only 3 integration points, and
thus can be computationally efficient. Two triangles could easily be joined to
make a 9-node or 8-node quadrilateral with a total of 6 integration points.
Triangular elements have obvious advantages in modeling around
discontinuities such as openings, joints and reinforcements where stresses are
highest and most important.

MATHEMATICAL DEVELOPMENT

The basic formulation of the elements described here follows Ahmad-Irons-
Zienkiewicz [1] with some modifications. The basic formulation is reviewed
in Appendix A. Note that matrices are generated in element coordinates, with
nodes 1,2,3 defining the x-y plane. One significant change is that nodal
rotations are interpolated as expressed in Equation AS. It follows that
bending strain terms do not include terms with derivatives of thickness, as in
Equation A12, since they would produce strains due to rigid body motion.



This change was made to avoid singularity or near singularity in tapered
elements with very thin edges, as in Plunkett’s vibrating wedge [7]. If only
constant thickness elements or elements with modest taper are to be analyzed,
this modification is not necessary or even helpful. All of the numerical results
presented here were generated by computer code that builds the element
matrix layer-by-layer with two integration points through the thickness of
each layer. However, it is shown in Equations A17 to A19 that code could be
written with explicit integration through the thickness, which should execute
faster. Note that only the stretching and bending parts of the stiffness are
computed by the process in Appendix A, and an important modification to
the membrane strain is described in Appendix B. The out-of-plane shearing
stiffness is computed by a different process, shown in Appendix C.

Appendix B shows an important innovation, not previously published, which
eliminates spurious membrane strain or “membrane locking”. In curved
quadratic elements (e.g. the AIZ 6-node triangle and 8-node quadrilateral)
bending causes spurious mid-surface strains except at the 2x2 Gauss points.
These spurious strains cause serious errors in fully integrated AIZ elements
when the “rise” (deviation from flatness) of the element is only about 1/5 of
the thickness. A happy exception is the (under-integrated) 8-node rectangular
quadrilateral with 2x2 integration, since the spurious strains are correctly zero
at the 2x2 Gauss points. However, this is little help in a triangular element or
in a quadrilateral whose shape is significantly distorted.

The technique used here to eliminate spurious membrane strain is, in concept,
surprisingly simple. It is observed that the average mid surface strain due to
constant-moment bending in the element is correct. The correct average strain
can be obtained by averaging strains at the integration points. Unfortunately,
this eliminates the gradient in mid-surface strains, which is needed for
accurate solution of some problems, and it introduces mechanisms.

In the 6-node triangular element, the gradient can be restored by using strains
from triangular sub-regions, as shown in Appendix B. It can be shown that
this process for recovering the mid surface strain gradient is exact for all
constant strain states and all linear strain states in a flat 6-node triangle with
straight sides.

This concept probably could be applied to the 8-node quadrilateral with full
(3x3) integration, which should make it capable of more distortion in shape.
However, a 9-node or 8-node quadrilateral with only 6 total integration points
can easily be generated by joining two 6-node triangles, which should be
about equally accurate and require less compute time.

Appendix C shows the method for calculating out-of-plane shear strain. This
concept originated with Utku [3], who applied it to a 3-node flat shell. The
basic concept is that the function used to interpolate out-of-plane



displacement must be one order higher than the function used to interpolate
rotations. This eliminates the problem of spurious shear strains (“shear
locking™). The concept was applied to laminated composite shells in
Reference [10], extended to a 6-node triangle by Yu [11], and generalized to
any nodal configuration by Martin and Breiner [12].

The procedure in Appendix C is strictly valid only for flat elements.
However, the MB6 matrices are generated in element axis with the x-y plane
defined by nodes 1-2-3. If the included angle of the element (angle between
outward normals at opposite sides) is 20 degrees, the angle between the
outward normal and the z-axis does not exceed 10 degrees. The cosine of 10
degrees is 0.985, so the error is small. This could be considered a limitation
or the MB6; that its included angle should not exceed about 20 degrees.
However, in the Scordelis-Lo roof [1,2], Figure 3 and Table 3, the MB6
solution is quite accurate with only two elements, which span 40 degrees.
More study of this limitation is needed, and the method should be developed
for highly curved elements.

Elements that use this procedure have one mechanism, which however is
suppressed by joining two elements. The mechanism can be physically
described as a relative rotation of top and bottom surfaces about the centroid,
with no strain energy. Although deflections are always quite accurate, some
imperfections in element strains in the MB6 have been observed in a linear
bending problem. Accuracy of strains is improved by using the weighted
least squares fit of equation C20 andC21. This may be related to the
mechanism, and more study of this may be appropriate.

Appendix D shows the method of calculating strains at nodes used in the new
elements.

Appendix E shows the method, not previously published, used in all elements
to generate artificial rotational stiffness about the z-axis. This is necessary
because these elements inherently have only two rotational stiffness degrees
of freedom at each node. The artificial stiffness must be added so that
coordinate transformation of the element matrix and assembly with 6 degrees
of freedom per node is possible. Selecting these artificial stiffnesses so that
they avoid mechanisms, constraints and ill conditioning, but do not
significantly stiffen the structure or add strains due to rigid body motion has
been a persistent problem.

The method discussed here meets all of the criteria just mentioned. It is a
combination of one reported by Zienkiewicz [13] and one due to Kanok
Nukulchai [14]. In a flat plate, each of these methods requires fixing at least
one out-of-plane rotational degree of freedom to avoid a singularity. Used in
combination, there are no mechanisms, and no special attention is needed for
calculations such as vibration of a flat free-free plate.



Appendix F shows the development of the simulated antisymmetric bending
mode (SABM) which is an option in 3 and 4-node elements. Linear Mindlin
elements can express symmetric bending exactly, but are not capable of
antisymmetric bending. The SABM substitutes shear deformation for
antisymmetric bending deflection with the objective of preserving the correct
total strain energy in “beam strips”. The method of Appendix F has proven
very effective when applied to the 3-node element [15,16]. When applied to
the 4-node element, it is too soft under some conditions, so an arbitrary
reduction in the softening effect may be appropriate. Additional study of the
application of the SABM to the 4-node element might lead to significant
improvement.

CONCLUDING REMARKS

Some techniques for improvement of Mindlin shell elements for analysis of
laminated composite aerospace structures, developed with support from
several NASA contracts, are brought together in the Appendices of this
report. These techniques have been applied to elements with 3, 4, 6, and 10
nodes, and can be applied to other nodal configurations. Performance data for
the MB4 4-node quadrilateral and the MB6 6-node triangular elements,
which use these techniques, are also presented.

The MB6 6-node triangle has uniformly excellent accuracy in all deformation
modes, needs no options for different conditions, and performs much better
than elements in some commercial programs in critical test cases. In regular
rectangular meshes it is about equivalent to the 8-node quadrilateral with 2x2
integration. In distorted meshes it is distinctly better. The triangular shape is
an advantage in modeling. It should be universally adopted for stress analysis
of laminated composite aerospace structures.

The LU71 3-node [10, 16] and MB4 4-node elements have proven to be quite
effective and robust, particularly in vibration analysis.
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SCORDELIS-LO ROOF [1,2] RESULTS

Problem Statement

:E Length: L=50.0  Radius: R=25.0
Thickness: t =0.25
" ! Loading: uniform vertical gravity load of 90.0 per
/ unit area

/4 Material Properties
Isotropic: E=4.32x10%, v=0.0

| *
N Boundary Conditions
Ve I l/

Supported on each end by rigid diaphragms,
\ I/ i.e. u=w=0.0 on curved edges.

Target Output
Vertical Displacement w at midside of free edge
=(0,3024

Figure 3(a) Scordelis-Lo Roof

0.60
0.50

Vertical displacement at mid-
free edge
¢ { o o
W A
o O

O-OO T T T s
0 5 10 15 20 25 30

Number of nodes per side

i—a—MBs —&—AIZ6 —0— AIZ8 -—x—MB4$IJ‘

Figure 3(b) Scordelis-Lo Roof Results

Target Deflection = 0.3024 ft at mid-side of free edge

Vertical Deflection at Mid-Side of Free Edge (ft)
Nodes per Side MB6 AlZ6 AlZ8 MB4SI
3 0.29178 0.09344 0.39091 0.47804
7 0.30244 0.22418 0.30960 0.31441
13 0.30495 0.28384 0.30364 0.30572
25 0.30377 0.29993 0.30232 0.30313

Table 3. Scordelis-Lo Roof Results
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PLUNKETT’S VIBRATING WEDGE [7] RESULTS

e=37°

1
J'i-t

Figure 5. Plunkett’s Vibrating Wedge

Objective
Determine the first 12 out-of-plane modes of vibration for a cantilevered
wedge section plate using a 3 x 6 mesh and consistent mass matrix.

Material Properties
Isotropic: E = 10E6, v =0.3, p =0.0002591

Boundary Conditions
All degrees of freedom are fixed at support. All u,v, and 6, displacements are
fixed to eliminate in-plane vibration modes.

Geometry
a = 30, thickness at tip = 0.001, t = 0.96899451

Results
Target: Experimental Data (normalized) for mode shapes similar to
Plunkett’s sketches.

Element MB6 | AIz6 | AIZ8 | MB4SI

Mode Target Percent Error
Frequency

1 247 -2.8 -2.4 -3.0 -3.1
2 10.6 44 6.9 2.1 -1.8
3 14.2 1.4 3.6 1.1 4.7
4 28.7 -0.9 7.7 -1.7 -5.6
5 34.4 -0.6 11.3 -1.0 -1.7
6 47.4 -4.7 13.9 4.5 -9.5
7 52.5 -3.4 8.3 9.1
8 54.0 -1.9 18.1 -3.6
9 63.5 9.1 15.8
10 68.0 -10.1 27.6

TableS. Plunkett’s Vibrating Wedge Results
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Version Z Deflection | % Error | Bending Stress | % Error | Interlaminar Shear | % Error
At E (mm) At E (MPa) Stress at D (MPa)
MB6 -1.0545 -0.5189 683.14 -0.1111 -4.00 -2.4390
MB10 -1.0544 -0.5283 684.60 0.1024 -4.01 -2.1951
AlIZ6 -1.0541 -0.5566 684.74 0.1228 -4.07 -0.7317
AlZS8 -1.0544 -0.5283 684.23 0.0483 -4.10 0.0000
AIZ10 -1.0542 -0.5472 684.28 0.0556 -4.10 0.0000
Table 7 Results for NAFEMS Laminated Strip
NAFEMS |  LAMINATEDSTRIP | TestNo.l | P"/imuedran
Origin NAFEMS report
Analysis type Orthotropic
Geometry
I
s ¥ 90°
: T T X ; o
| 0" fibre directi i .
LT e LT
é H 1 : . 2 -
L e 15 15 10 | 2 W
il g o1t O i -
10N/mm ®.
x A E A F
A B
All diroensions in mm
Loading Load line of 10N/mm at C (x=25, 2=1)

Boundary conditions

One quarter model, simply supported at A (z=0) and

reflective symmetry about x=25 and about y=5

Material properties

E, = 1.0ES MPs, v, = 0.4, E, = 5.0E3 MPa,
Gy; = 3.0E3 MPa, vy, = 0.3, Gy, = 2.0E3 MPa

Vip T vy

E

Element types

Laminated beam, Iaminated plate, laminated brick
or stacked brick

Meshes
—_— -I— T T "JT —
! t ! | C,D,E
{ | t i ? &
Output Bending stress at E Target 683.9 MPa
Interlaminar shear stress at D -4.1 MPs
z deflection at E -1.66 mm

Figure 7 NAFEMS Laminated strip




NAFEMS BENCHMARK TEST No. LE2 NAFEMS BENCKMARK TEST No. LE3
For shells Hemisphere with pinch loading
CASE1 | CASE2 COARSE | FINE
Nodes Nodes Nodes | Nodes
SYSTEM 4 8 ! 4 8 SYSTEM 4 B8/4 8
NASTRAN 153 L-10.5 -17.0 {-6.0 NASTRAN j+3.2 +1.1{+3.2
ANSYS -18.0 #32.0 }-55.0 {+5.0 ANSYS -19.4 1 0.0 {+1.1 |Warp flag
GIFTS +29 Membrane locking GIFTS 149.6 -7.2
MELINA 1982 ]-98| -23!-50 MELINA ~54 -8.1 |9-Node shell
MELISSA -1.0 6.2 MELISSA +23.8 0.5
MARC -4.2 1-12.0 +10.8 { 6.9 MARC  }65.9+20.5+11.8-13
PAFEC +5.7 -1.6 PAFEC -11.3 0.0
JASAS -55.0 +4.5 ASAS
LUSAS +4.0 [ +3.1]+476{+7.6 LUSAS -93.5 | -9.7 $-81.6 | 0.0 [Full integration
FINEL -10.0 +2.0 FINEL -3.1 ~2.2
SUPERTAB |-18.8 1-25.8 140.7 +15.8 SUPERTAB |+1.6 +31.9|-0.5|4.3
BERSAFE -22 -8.2 {Reduced integration BERSAFE -14.7 -0.1 {Reduced integration
COSMOSM | -6.3 | -4.84-24.0 | +3.3" COSMOS  1-11.3 415,09 -1.1 | -1.6"
ABAQUS 00]-03!+1.0{+0.8 ABAQUS 1432143 (-1.1{ 0.0
NISA +2.6 120 #11,0}-5.0 NISA 9S5H114L1731+76
Table 82. NAFEMS LE2 Curved Shell Table 8b. NAFEMS LE3 Pinched Hemisphere
Patch Test 1989 Results Sheil 1989 Results
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Appendix A
Curved Element Development

The element x-y axis are in the plane defined by nodes 1-2-3, with origin at the centroid,

x axis parallel to the 1-2 edge, and z axis perpendicular to the plane. The element matrices
are developed in these axes.

Unit vectors, €, and €, tangent to the mid-surface at any point are
;2N

&=y,.=2 N,y

I, E N, .z,
[ so 8

[Al]
Xop ZN,.,,,x,.
€= Yo = ZNI,r;yi
o ZNMZ‘

Where x;, y;, z; are coordinates of nodes and N, are conventional interpolation functions.
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|

/= 2= m,
piei] |

n

—_é,xé‘2=

Rl [A2]
[ 1]

V=V, xV;=|m
| |

The local axis x “y“z“at any point are the directions of ¥;, ¥,, andV,, respectively.

Rotations in element axis are

6174 4 LT e
0,|=|m m m| B

oz nl n2 n3 0

[A3]

In a flat element

—— Py

V=i, V;=j, a=6, and B=0,

With these definitions, the material property transformations can be done as in a flat
element, provided that, the angle ¢ which is input is the angle between the local x' axis
and the fiber direction.



Curved Element Development

x= i Nyx, + i N,{—;-t,.ly

i=l i=]

n n 1
y= Z Ny, + Z Nlé’iti’nji [A4]
i=1

i=1

z=) Nz +), N,.:-;-r,n3,.

i=1 i=l
Where »n is the number of nodes in an element.

Displacements in the element x-y-z axis are

n 1 n
u= Z Nu, +—2-t§Z N[-La, +1,8]

i=l i=]

n l n
v= Z Mvz' + Etgzl M[_mziai +’nliﬂi] [AS]

=1

n 1 n
w= ZN,W, +5té'z N[-ne; +mp]

i=] i=l

Where

Z N[-La+1,p] Z N,[-mya+m,f] z N,[-n,a+n,p]

i=1 ’ i=l > i=]

interpolates rotations of normal lines. This differs from Ahmad-Irons-Zienkiewicz in that
interpolated nodal rotations are multiplied by the local thickness, ¢, scaled by {to produce
a contribution to u, v, and w. This is significant only in variable thickness elements.

Note that both rotations and displacements are defined at the middle surface, and the
Jacobian J should be evaluated there.

The transformation of rotations from the local axis ¢;, and 5, to the element axis 4, 6, &,
is

21



Q,; L m, n, aﬂ'
Bl=|bL my ny ayi = I:ax [A6]
O 131 ”131 nBi 9:!
The Jacobian J is
e Vop D
A7
J={x,, Yoy 2oy, [A7]
Fog Vog 2
Where
n n l
Xoe = ZN,,,:X, +Z Nxa;'z"ailsi
i=l i=]
n n 1
x’r]=ZM’r] X +2Nm, Eaily [A8]

i=1 i=]

51
x,=2.N, > tib
i=]

Etc. where n = number of nodes.

In the new element versions stiffness matrix, the Jacobian J is always evaluated at the
mid-surface, {'= 0, so the terms containing § after differentiation vanish.

Let (for 4-node case) (other cases similar)

L, 4, 0 0 00 0 0 0 0 0 Off, 0 0 O
|0 00 -y i, 0 0 00 0 00J0T 00 [A9]
““10 00 0 0 0 L, 4, 0 0 0 Ofj0 0 T, 0O

0 00 0 00 O 0 0 - L, 0j0 0 0 T,

-n, m, 0 0 0 0 0 0 0 0 0 Off, 0 0 O
e | 0 00 -m om0 0 00 0 00j0T 00
"10 00 0 0 0 -ny, my O 0 0 Of0 0 T, 0

0 00 0 00 0 0 0 -m n, 0JO 0 0 T,

22



—my, m, 0 0O 0 0 O 0 0 0 0 Off, 0 0 ©
szo 0 0 -my my 0 0 0 0 0 0 Of0 T, 0 0
0 0 0 0 0 0 -my m O 0O 0 Of0 0 T, 0
0 00 0 00 0 0 0 -m m, 0fO0 0 0 T,

Therefore, the displacements within our element can be expressed as a function of the
nodal displacements by

N 0 0 —l—gtNRu u
u .;. >
v|=|0 N 0 =(iNR | _ [A10]
2 w
w i —
0 0 N —z-gtNR" 6
Where, for the 4-node case,
=g 5 7 @]
vi=ly T, v 7]
[Al1]
WT=[W1 w, W, _w-«:]
gr - [—xl __vl _zl §x2 ayZ -ézz pxé) -éyii 5:3 _é.ﬁ §y4 az«l]
To get the strains we differentiate u, v, and w, for example
u u
N OOlé’tNRuF+OOOI{tNRV Al2
u,.= s ~ s -1
8 § 2 § W D) 4 v [ ]
7] ]

Terms involving the derivatives of ¢ such as the ¢, - have been neglected since they give
strains due to rigid body motion. These derivatives vanish when the element thickness i is
constant. This formulation is used to avoid singularity due to very thin edges.The
Ahmad-Irons-Zienkiewicz formulation may be a bit better for thick elements.

23



The derivatives of the displacement functions may be computed at any point as

r ]

1
N, 0 0 Eguv,énu
1
o N, 0 0 Eguv,,, R,
u,, 0 0 0 %tNR,,
u,
g 0 N, O —l-gtN,¢R, K
Vog % _
| 4
vol=| 0 N, 0 Eguv,,,xv - [A13]
v, 1 —
’ 0 0 0 —N 0
W,g 12 R, |
Wiy 0 0 N, —z-é'tN,gk,,
LW | 1
0 0 N, E{tN,,,Rw
0 0 o0 —;—tNR,,

u, £
- 5' - u’r,
X
g - s
r J-l O O v’g
A -1
o =THl 0 J 0 v,
” 0 0 J'|w, [Al14]
8 -
Iz
&' W
Lz W,’,
L W J

Matrix H above transforms derivatives to strains in the element (x-y-z) axis (Cook, p.
360) and matrix T transforms strains to local (x ~y ~z) axis (Cook, p. 212).

Combining these equations, we can write

[A15]
&' =[B,+JB,

l ¥ w &



Where strains are in the local x “y “z “axis.

The stiffness matrix (integrated in local axis) is then
= | B"D'B[DetJ|d
K = [ B"D'B[ DetJ]d&ind¢ "

Only the stretching and bending parts of the stiffness matrix are computed from this
expression in our elements. The out-of-plane shearing stiffness is computed from a
different process.

In these equations, the Jacobian, J, is evaluated at the middle surface.

" Note that explicit integration through the thickness is possible.

K= [[B. +¢tB]|D'[B, + {tB | DetJ Jdgdnds
= [ BID'B,[ DetJ )dgdnds + | Bl [¢* D' 1B, DetJ]dgdnds [A17]
+[[B![¢tD]B, + B! [{1D'|B,| DetJ dgdnds

B, contains ¢/, but in the form above, ¢ is factored out of B;.

1 NLAY
J.~l Dd¢= ZD';‘ (4, -;j-l)

j=l

[\ prdc=[pgic+ [ Digic......

2 9! 2 ¢
=D{—;——] +D2'§—} o
2l T2l [A18]
NLAY | 2 2
=2 5D,(65-44)

1 MLAY
[\peas=3,5pie-6)

In a sandwich structure with constant-thickness skins and variable-thickness core, the

integrals
[\pac. [ o, waf poag

25
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would have different values at each integration point.

To complete the integration of

&= [ B[]\ Ddg|B,Derlsagin

+f B{:Z[ [ D ;’d{]BlDet[J]dédr) [A19]
+f [ Bjt[ j'l D';d;]s, +BT :[ j’l D'@(]BO}D“[J Jagdn

does not require multiple points in the through-thickness direction. The computing time
could be considerably reduced, compared to using two points per layer in the through-
thickness direction.



Appendix B
Modifications to B,.

In curved quadratic elements, bending causes spurious mid-surface strains, except at the 2
x 2 Gauss points. These spurious strains cause serious errors in fully integrated Ahmad-
Irons-Zienkiewicz elements when the “rise” (deviation from flatness) of the element is
more than about 1/5 of its thickness.

It has been observed that, in constant-curvature bending of quadratic elements, the
average mid-surface strains is (correctly) zero. Thus, the spurious mid-surface strain
which causes excessive bending stiffness can be avoided by replacing B, with

B,y = Z”/kBok [B1]

k=1

where m is the number of integration points over £ and 7 and Wj are the integration
weights.

Unfortunately, this eliminates the gradient in mid-surface strains which is needed for
accurate solution to some problems. It also introduces mechanisms.

In the 6-node triangular element, the
gradient can be restored by using
triangular subregions. Using 3-point
integration for the 6-node triangle, the
o integration points coincide with centroids
/ N of the 3 corner subregions. Denoting the
AN strain-displacement matrices of the three
/ \ subregions by B;, B,, B;, the membrane
ol strain gradient is restored by using:

\\ / \\ 3

\ \ . 1 _.

\ / \ B.=B, .+B -5 —-B B2
//@ . N . = By + B, 2;3 ' [B2]

N,
« N » It can be shown that this gives exactly
correct membrane strains for all constant
strain states and all linear strain states in a
flat 6-node triangle with straight sides. No mechanisms are introduced by this process.
Strain-displacement matrices are computed for the 3 comer subregions as flat 3-
dimensional constant strain triangles.
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Appendix C
Shear Perpendicular to Surface in Flat Elements

In Mindlin plate theory, shear perpendicular to the surface is given by

W
}’ﬁ =5_®x
W
Ye=—7t10
a& 7 (C.1)

Sign conventions for displacements and shear strains are shown in Figure C.1.
It is evident from equations C.1 that the function representing w should be one order
higher than the functions representing®, and®,. Some conventional element nodal

configurations and the terms appearing in interpolation functions are shown in Figure C.2 The
solid lines bound terms in" the conventional interpolation functions used for®, and ©,, and the

dashed lines bound terms required in the “unconventional” interpolation functions used for w by
Family 1 elements.

~ All elements considered here have three degrees of freedom at each node: displacement
w, rotation ©,, and rotation ©, . Rotations arc always represented by conventional

interpolation functions which are continuous on and across element boundaries. Bending strain
energy is computed from rotation interpolation functions in the conventional manner.

Element Family 1
Following Utku (1) we choose

w=w+w (C2)
in which w’ represents bending or “Kirchhoffian” deflection and w’ represents shearing
deflection.

K _w W

& & &

I _ W

¥y ¥ I (C.3)
When shear deformation is zero we see from Figure C.1 that

w '

oo =2

& -

M 0, = M

¥ ¥ (C.3a)

Using C.3
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z

Midsurface

(a) Deformation in x-z plane

z,w

Yytaw'y'ex

v=-20,

Midsurface

+0, y.v

(b) Deformation in y-z plane

V)
€

0, =¥, if 37=0 Jw*

X ad
z Tx2= 5‘_: +9,=;‘;’
[ / l g—:’=‘yn if 9,=0
X X

(c) Shear deformation without bending

Figure C.1 Sign Conventions and Shear Deformation Relations
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Nodal Terms Included
Configuration inInterpolation
1

Xy
x xy Z’

x)x!y ylx yi
xd xly xlyl yix yd

1

Xy
x xy y’
x,xly ylx y3
xl x.'y x?yl xy.' y‘

xl x‘y xly! xlyj xyl y’

1

2

xYy
N\
'y xy}

2

F)
= x'y £y xy' y*

1
Xy
xtzzxyzy;s
Y yx/y
A\x'y 2y’ xy'/y’
5 4 s
X xXxyxy xy xy Yy

x‘ x’y xlyt xlyl x2y4 xyS y6

Figure C.2 Nodal Configurations and Interpolation Terms

Number
Equations
Available

12

20

16

18

Number
Unknowns
Family )

14

12

14



M o

& & T

W ow

—-:——G)x =y

A g (C3b)

In Figure C.1 it is shown that
w
Y= =®y when _é_= 0

7n=%:— when ©, =0

so the choice of functions in Eq. C.2 is acceptable.
The method of Element Family 1 will be illustrated by application to the four-node
element.
The conventional, continuous functions used for © are
0, =g, +ax+ay+axy

O, =by +bx+b,y+bxy (C4)
The function for ¥’ is chosen to contain terms one order higher:
W =c, +ox oyt oxy+ex’ oy +egxty+c,ytx (C.5)

An immediate problem arises, since differentiation of w' does not yield exactly the
desired expressions for ©, and ©,

0, = > €, +Cyx + 20y +cx’ +2c,yx
¥ | (C.6)

The coefficients can be identified with those in Eq. C.4 except for term ¢ x”.
-0, =——=q +oy+2c,x+2cxy+ Y
& (C.7)

Again, coefficients can be identified with those in Eq. C.4, except for term ¢,)?.
Another conflict which arises is that ¢; corresponds to both a, and b, in Eq. C.4. Utku

resolved this problem in his three-node element by using an average value.
Numerous attempts have failed to find a way to eliminate these conflicts. However, it
appears that they do not prevent reaching the goal of representing all constant strain states

exactly.
For pure bending in the y-- plane
0722, = 2¢, +2¢,x = constant
&y (C.8a)
which requires that ¢, =0 for this pure bending state. For pure bending in the x-z plane
Fw’

——— = 2¢, + 2¢4y = constant
at (C.8b)
which requires that ¢, = 0 for this pure bending state.
For pure twist
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Fw'
X
which requires that ¢, and ¢, =0.

=cy+2¢x+2¢,y

(C.9)

To compute the values of thec,, we require that Eq. C.6 and Eq. C.7 be satisfied at the
nodal points. The bar above a symbol designates nodal values of the variable.

[ s

0, 0 1 x
O, |0 1 x
O, [0 1 x
0. |0 1 x
@;, -1 0 -V
(_-D-y‘2 -1 0 -y
@,G -1 0 -y
_@,4 1 -1 0 -y,
Denoting the 8x7 matrix a_b_ove as A
®=Ac
AT@=A"Ac
c=[A7A]"AT®

This is a least-squares solution for c.

0
0
0

2}’1
2y,
2y,

2y,

S O O O

2y%
2y,x,
2y
2y,x,

W =c, +[x y xy x* Y iy xy2] [ATA]QIATG_)
Note that additional terms could be added to w’, and Eq. C.10 can be solved if Matrix A has at

least as many rows as it has columns.

Interpolating w" by the same function as ©, and ©,

w =dy+dx+dy+dxy

* '
w=w +w
Combining ¢, with 4,

w=[l x y xy]d+[x y xy x* 2 xYy xy2”ATA]'1AT—®_
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w, 1 X oy xyld,
Wl |1 &% »n x4
W_; 1 X3 Vs X)) dZ
wol 1 x ye x)jd
_Xl M XN xlz yl2 X 12y 1 xl.ylz
4% 2 B x5V %y, % [ ATA]‘I AT®
2 2 2
X,y Xy XY Xy, X
ENNTRE A A (C.15)

or
w=Bd+C[ATA]'AT®
B'W=B'Bd+B'C[ATA]'AT®
d =[B"B| ' B'W-[B"B| 'B'C[A’A| 'A"® C.16)
w =l x y »]d-c,
w=[l x y xy]d+[x y xy x* y* Xy xyZ]c
w=[l x y xy]{[BTB]" B'w-[BB] 'B’C [A’A]"A"@}
+[x y xp x* ¥ xy xyz] [ATA]—]AT@
Shear strain can be computed u§ing EqC.3b

124
=X _ 0
Y [0 1 y]d

2

¥ _jo 01 x]a
& (C.17)
An alternate way of expressing w’ is, using the conventional isoparametric interpolation
functions

7 12

w =NW (C.13a)

where w" represents values of w" at the nodal points. Equation C.14 can be re-written as
. 2 2 2 aTal AT
w=w +[x y xy x* Y XYy xy”AA] A'e

(C.142)
w=w +C[ATA]'AT®
and
W =w-C[ATA]'AT® (.158)
Then
W= N[w -C [A’A]“A’@]
(C.168)
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=" & &
V= %’;— = %[W_ C [ATA]"A’@] cim

Equation C.17a provides a simpler way of calculating shear strains. The expression
inside the brackets contains the nodal deformations but otherwise consists of constants.

Element Family 2
Calculation of the coefficients in the expression for w’ is done by writing equations

which state that at nodal points

Mo,

@/ .

&V'

Z -0

Iz ’ (C.18)

Thus, each nodal point provides two equations. In Figure C.2, the last two columns show the
number of equations available for calculation of coefficients and the number required for Family
1 elements.

For the four-node element, eight equations are available, and there are seven coefficients
to be calculated for the Family 1 element. One additional term could be added. Since symmetry
is required, the only choice is to add the x°)y* term.

Some of the other elements in Figure C.2 offer several choices of additional terms. The
six-node triangle allows addition of either one or three terms. The eight-node quadrilateral
allows addition of either two or four terms, but there are three possible feasible patterns.

Calculation of element matrices for elements of Family 2 proceeds exactly as for
elements of Family 1. There are more terms in w’ defined in Eq. C.5; more columns in Matrix
A, defined in Eq. C.10; and more unknown coefficients in vector ¢, but the calculation process is
otherwise identical.

Out-of-Plane Shear Using Weighted Least Squares

In the generalized Utku procedure for generating the out-of-plane shear stiffness submatrix, the
nodal rotations, ® , are related to parameters ¢ from the function describing the “Kirchhoffian
deflection”, w’, by

®=Ac [C.19]

Usually, matrix A has more rows than columns, and a least squares solution for ¢ is required.
This solution can be weighted by introducing a diagonal matrix of weights, W. For example,
side nodes of a 6-node triangle could be weighted differently from corner nodes.



ATWO = A WAc
[ 47 1o roge

This weighting can be easily introduced by replacing 4" by A™W.

For example, to weight corner nodes differently from side nodes in the 6-node triangle, with
rotations order as

§T=[®x1 0, 0, 0, 0,5 06, ] [C.22]

Simply multiply the first 6 columns of A" by the corner node weight coefficient, which leaves
W,;= 1 for side nodes. An extensive numerical study indicates that 0.07 is a good value for comer
node weights in 6-node elements.

This treatment of shear strains is strictly valid only for flat elements, but works very well in
curved elements if the included angle between outward normals is not too large, as demonstrated
by test cases. In the Scordelis-Lo roof it works very well with only two elements, each spanning
40 degrees. However, most performance data is from standard tests where the elements only

span about 20 degrees.
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Appendix D

Strain Calculation at Nodes

Strains are initially calculated at integration points, but values are desired at other
locations, especially at nodal points. Strains are derivatives of displacements, and should
be interpolated by functions one order lower than displacements.

In the case of the 6-node triangle, displacements vary quadratically, and linear
functions are used to interpolate strains. Using 3 integration points, the relation between
integration point strains and strains at the 3 corner nodes is

2 11
-

€ Nipg Ny Ny, |l Em % g ? €n

En|={Nipp Nyppa Nyl éna|= 536 Enz [D1]
€ Nip Ny Ny L Ens 1 1 2§¢n

|6 6 3]

Or

&,=9¢,

ey=9"¢g, (D2]
For 3 components of strain

En €t Vom o €ot €yt Vaup D3]
Exnz €z Vw2 |= €2 €z Vom

Eny Ews Va3 €23 €3 Vops

Strains at any point can be obtained as

Ent €t Van Eai €1 Vop
-1
[3, g, yxy]=[Nl N, Ns] Evz Ewz Yoma [N N6 & Vap [D4]
8W3 6'yN'.% },xyN3 8.\;03 8}73 y.xypS

or, transposing

&, 8xpl 84,2 8xp3

&, 1= 6 Epz Eps PN [D5]
Yy Yoot Yp2 Vaps

This relation can be used to compute strains at any point, including the 6 nodal points.
The same process is used for all components of strain, membrane, bending and shear.
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Interlaminar Shear Stresses

Interlaminar shear stresses can be obtained from integration of the equilibrium equations

oo, 0tr, or

+ +—%=0
ox oy oz
B‘rxy+60'y+6ry, -0 [D6]
Ox oy 0z
0
%4._1}'5_4.602 =0
ox oy Oz

We compute in the local axis

z' ao'x, or 2y’ ,
Top = J-_’/Z -E"l‘ —é:;'— z
z' aO'yn a Tx‘y' '
Typ = i ay' + _6x' z
1
Cpx Epy Opy & £y [Dg]
o, |=D &, | and |0, |=D| &,,
Ty Y ey Ty Yeyy

In Mindlin plates and shells, the strains must vary linearly through the total thickness, and
stresses must vary linearly within a layer where material properties are constant.

k
ez Jop of lyer k. = Z[ax'.x' + Tx‘y'.y'] 4 [D9]
i=l

H

Where o,.,.and 7, are average or mid-thickness values in layer i and # is thickness

of layer i.
Similarly,
k
Tys ]top o lawrk ; [O'Y'»y' F ey ]jti [D10]
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The ANSYS theoretical manual notes that this summation which starts with ... =0
andr, . =0 at the bottom may give 7,.. #0 and or 7., # 0 at the top due to inexactness

in the calculation. ANSYS has a procedure for distribution this error to make 7., =0 at
the top, which is also used in our programs.

In the 6-node triangle, which has 3 integration points, strains needed are generated as
shown below, and then multiplied by material properties as in Eq [D8] to produce the
stresses needed in Eq [D9] and [D10].

Epx Ept €2 € Ny, ©,, e 0,, Ny,
Eypw |=| €t Epz Eps INT| Ny |[+2] -O, -0,, -0,, INTIN,,
Yy Vool Vap2 Vaps N o 0,,-0,, 6,,-6,, 6,,-06,, N;
Eval [Pl Eval [P2 Eval [ P3
Exy €p1 €2 €3 Ny, 0,. o,. o,. Ny,
Ey |=| Ep1 Epr Eps [INT| Ny |44 -0, -0,, -0,, INTIN,,
Yeyy Voot YVap2 Vnps N, 3y C vy ®x,x C/ vy G)x,x e vy ®x,x N 3,y
Eval [P\ Eval[ P2 Eval [ P3
[D11]

In the 6-node triangle, linear interpolation functions for strains, V,, are equal to area
coordinates &, and derivatives in Eq. [D11] are

Ny=6G»=he,+mg,
Nyp=Gn=hn, +mn,
Ny, =&o=-he,-ms, —ln, —mn,
[D12]
Nl,y' = 51,y' = lz‘fx +’”2§,y
Ny =Gy =hn,+mn,
NJ.y’ = §B,y' =-Ls, -mg, -Ln, - mn ,



Appendix E
Out-of-Plane Rotation Stiffness

Mindlin plate and shell elements usually have no rotational stiffness associated with the
component of the nodal rotation vector that is perpendicular to the element surface. (An
exception to this is elements with Allman rotations)

All of our plate/shell element matrices are formulated in element axis with 6 degrees of
freedom per node. Two procedures are incorporated which can provide the needed out-
of-plane rotational stiffness. Each has a coefficient that can be an input item in the
program, to modify the “basic” stiffnesses. The combination of these procedures avoids
singularity in flat regions without fixing any degrees of freedom.

Zienkiewicz procedure adds a stiffness to the diagonal of each ®, degree of freedom, and
subtracts 1/(n-1) (n = number of nodes) of that stiffness from each off-diagonal ®, degree
of freedom in the same row and column. This retains symmetry, equilibrium, and
freedom from forces under rigid body motion. Our “basic” stiffness is the average of the
nodal in-plane rotational stiffnesses from the bending sub-matrix.

The Kanok Nukulchai procedure is a penalty method which creates an artificial quasi-
strain energy, U;.

2
U =x ‘Gx.y.tj‘ [@z - -21-(vx —u, )jl dA [E1]

The quasi-strain, &, can be written as

o1 . _
£=0,- —2—(\{‘, - u'y.) =Bu (E2]
Where @, .................. local rotation perpendicular to the surface interpolated from
nodal values
| T . .

E(V,x - u,y) ... ...... clasticity rotation

Gy wooveoveneee oo In-surface shear modulus

t .v...... thickness

Ki.oweowcoveeonn...... Coefficient for magnitude of stiffness

u .. vector of nodal displacements

Then, the artificial stiffness matrix is

K,=x,G., [ B/ Bda=x,G,, w[B[B,] Dets 3]
i=]

Where n = number of integration points and w; = weights.
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The determinant of the 3D Jacobian used in our programs is evaluated at the mid-surface.

GX
9:
-@Jd-1
O
®zl 5
@, =[N(bmn) Ny(Lmn) Ny(hmn) N,(,mn)]8,, [E5]
0,
_624_

For a 4-node element

u:y' =u bl +v. ml, +w nl,
+ u‘yllm2 +v mm, +w mm [E6]
+ uzl‘”z + ",zml"z + w,znan

V.'x' =u Ll +v ml + w,ml,
+u lm +v mm +w n,m [E7]
+ulm +v mn +w nn

The derivatives on the right hand side are available from

(u, (N, 0 0

u, N, 0 0

u, N, 0 0

v,| [J" @ o]0 N, 0=

v,l=l0 J* o0 N, 0|+ (ES]
v, 0 o0 J'|o N, 0w

w, 0 0 N,

w, 0 0 N,

W, ] i 0 0 N.c_




An extensive numerical study indicates that 1 percent of the average of the in-plane
rotational stiffnesses from the bending submatrix is a good value for the Zienkiewicz

procedure, and that 0.05 is a good value for the coefficient in the Kanok-Nukulchat
procedure.
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Appendix F
Simulated Anti-symmetric Bending Mode

Mindlin elements with 3 or 4 nodes are not capable of anti-symmetric bending, i.e.
correct response to linearly varying bending moment. The simulated anti-symmetric
bending mode (22, 23, 24) substitutes shear deflection for bending deflection and
preserves the correct total strain energy in “beam strips”.

For one layer, a reduced shear modulus, G; , for a strip in the local x direction is

2
1 _ 1 [oL]

G, ENF [F1]

Where L, is the length of the strip, E. is the bending modulus, and 4 is the thickness
(depth) of the strip, and a is an effective length factor.

For symmetric orthotropic layers

1 1 [aL,]

%) =2 03
[ciaz [, 1207 [F2]
-hi2

-h'2 -2

For general orthotropic layers

t ot fa]
120 [F3]

= hi2

72
j Cssd= J. Cssdz

~hi2 -hi2

D= hj'zgl[r? 2Tz + zz]dz

-hi2

hi2

fz—Q_l dz
r-H—
[Ge

-hi2

The notation for O is used as defined by R. M. Jones.



In the local x axis, Css = Gy and O, = k., .

In the four node X,
element, 4 strips are

used. The effective

length factors, o, are

0.707 for the diagonal
strips and 1.0 for

strips connecting

midsides.

[ . . ]

F.’-C”dz;,; Sin*@, 2Sin@,Cos8, Cos*8, UC‘:“dz]
J G|, | sine, 25in6,Cos6, Cos'd, ([t
[ j cgsdz] | Sin*6.  2Sinf.Cosf. Cos*@. |-+
f C;dz'c Sin*6, 2Sin@,Cosf, Cos*0, U Cssdz]

(F4]

D

Values of I C;; on the left hand side are calculated for each “beam strip”, which requires

appropriate material property transformations. The equation above is then solved for by
least squares to yield

fCL,d:, fC;sd::, and J. Cydz

in the element axis.

If the shearing stiffness sub-matrix is integrated through the thickness before integration
over the area, these integrals are used directly. Otherwise, ratios of reduced integrals to
true integrals are computed and these ratios applied to out-of-plane shear moduli.

In the triangular element, strips are taken parallel to each side and the theoretical
effective lengths should be & =0.707.
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This procedure has worked very well in 3-node triangular elements. In 4-node elements it
is very good in some deformation modes, such as in a cantilever beam. However, in a
centrally loaded square plate modeled by 4-node elements it is too soft, so the
coefficients need to be reduced from the theoretical values derived above. More study of
this is needed.



APPENDIX G

6-Node Flat Shear Panel (Using 10 Node Shape Functions)

Out-of-plane shear strains can be calculated entirely in curvilinear coordinates, as shown here. Numerical
results from this process are identical to those obtained by using a complete cubic polynomial in the
procedure of Appendix C. While the development in this Appendix is strictly valid only for a flat shear
panel, it is an important step towards development of a curved shear panel. The interpolation functions for

a 10 —node triangle are used as a convenient representation of a cubic polynomial, and the parameters, ¢;,
just happen to correspond to deflections at the nodes of a 10-node triangle.

The total displacement w from bending and shear is expressed as
w=w +w' [G1]

Where w' represents shear displacement and w” is bending.

Note that
w* =Nz, [G2]

Figure G-1 10-Node Triangle
The functions, N ;, are
For the comners (=1,2,3)

1
N, = E:; (351 - 1)(3§i -2)
For the mid-side nodes and node 10
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O

N =27 515253
N,

= 25HEGE-D
Ny =2£6(6 - D
No=2£606 -
N, =2 6,636~
N, = 266,06 D

O

N, = '2”5351(351 -1

We require w* = N,c; as a function of &,&,, &;and ¢, This allows us to compute

ow* 6N
ox 6x
ow” 6N
> o K
Note

oN, 0N, 3¢ 0N, an

ax o8& 6x on ox

From Cook

51 =¢

=7
cy=1-¢-n

Which yields
6N, ON, aN,
o8&, d¢,
N, 0N, ON,
on 05, ¢,

Finally, the derivatives of the functions IN with respect to f are

[G3]

[G4]

(Gs]

(Gs]

[G7]



N, = %[2753 ~18¢,+2]
N,;=0

N;.= -—-;—[2755 -18&; +2]

Nos= 21666 6]

Ny = 21363~ &

Nos==213¢ - &

N, =-2{606 - D+366)]

Nys = 21636 - D636 - D-356)
N = 21636~ D+ 366 - 605 - D)
Nue = 27166, - 5]

and with respect to 77 as
N,,=0

N,,= %[2752 -18¢, +2]

N;, = —%[27§§ -18¢; +2]

N,, =503 -4

Ny, = 21666, - &1

Ne, = 21666 - D= 636 - D+36:6,)
N, = 2608 - D- £G4 - D-36:6]
Ny, =~ 21606 - D+36]

Ny, =-203 - &1
NlO,q = 77[5;53 - 5152]

{G8]

(G9]
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on 8§ on
Weneed —, —,—, —
T’ 3}' oy

Use 6—Node Shape Functions

x=Njfj

y=Ny,

Jj=1to6

From Cook
&

J=|0¢ 9 =[451-1 0 -45,+1 45, 45, 4(¢,
_6_x_ _Qy_ 0 452"1 ‘453"'1 451 4(&3‘52) 451
on On

Forj=1t0 6

[_@_’ 2
= J“_.._ Jzz ~Jia - 1 | on oé
WIL=dn Ju ] [oxdy oy ax [_é’i &
akon dcon|L 9n 9¢
25 on
_{0x ox

Y=log on
o oy

Recall from G2

-Cl
%)
G
€

N Cs

w =[Nl N, N, N, N, N, N, N, N, Nlo]c

6
¢
G
G

| €10

- 51)-

Vs |

4!
Y2
Y3
Ys

[G10]

[G11]

[G12]

[G13]



[ow* ] oN,
¥ E3
_ow oN,
Oox A
+ ox
| ON,
o] | o | | %
O -2 |_oN,
0., ox Ox
9 ow* oN,
SR £l
9:3 _ ow* —-aﬂ
6,3 = Ox |__| ox
0x4 ow’ %
0, oy oy
0, || (-
) - ox
%) o | |20
x6 ay ay
[ 6,6 _ow’ _%
x
o || 2
| "o ]t ox
Or
[5] =[4]c]

Which allows us to solve for c as

[c]=[474]" 47[6]

ox

Note: we generate matrix A in 2-row blocks

For node j

ow* gé_’_aw" on

0, _ow'ds aw'on

0 ox On ox

[0g]= ot &y on oy _

o¢

dy
_o
Ox

.....

.....

.....

.....

.....

oN,
o¢

oN, N,

ON,, I| &
o | &

oN,,

on ¢

0

[G14]

[G15]

[G16]

[G17]
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The matrix A”4 in equation G16 is initially singular. The singularity can be removed by augmenting
matrix 4 with an equation that assigns a zero value to w" at the centroid of the element. After some
manipulation, the only change is to add one (1) to A"A .10 which removes the singularity and allows
inversion.

The terms
% Oon
o o
_9 _on
Ox ox

in equation G17 can be obtained from the I' in equation G13 defined earlier.

Recall Gi

w=w +w'

Which we can rewrite as

r9,\'1 1
0,
w=Nw +[N, N, -+ N, J[4741"'47| : [G18]
O,
O,
This equation must be true at each node so )
N, evaluated at node 1] 8, ]
N, evaluated at node 2 8,
w=1Iw" +|N, evaluated at node3 [A" A" 47| : [G19]
: : 0.
| N, evaluated at node 10 | [ 6,6 |
Which can be written more compactly as
W=Iw +X[4" 4] A7[6] [G20]
This can be rewritten as
W =W -X[47 4] 47[9] (G211

Finally, from basic mechanics we may write



ow | [N N

w =
7| || |ON N
dy dy dy
Where
oN o0& On

o |_|ox ax [46i-1 0 A5+ 45,

ON|7|0¢ on| o 4g-1 —4g-1 45 4(&-&)

] o

Applying to the 6-Node flat shear panel yields

Va|_ 45,-1 0 45 +1 4¢,
Yl 0 45,-1 —4&,+1 4,

Where
[ 1 0 0 o 0 0 o0 o
0 1 0 0 0 0 0 O
0 0 1 8 (9) 0 0 O
Q= —i -i 0 — — 0 0 Oo
16 16 16 16
0 ——1— ——1—- 0 © —9—- —9— 0
16 16 16 16
---l— 0 —-—1—- 0O 0 0 O -?-
| 16 16 16

Yel_|ax || ox lor | 8 [y _xrarar 4717
[ ]- = IX[AA]A{EJ

[G22]

‘452 4('53 - 51)
42
4(53 - 51)

-4,

4(53 - 9:2)

o O O O

oo o

o o o o

-4¢

][1 -Q[ATA]"A’j
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